Das datengetriebene Attributionsmodell
25.03.2022
Marketing-Budget mithilfe von KI optimal verteilen
Eine der häufigsten Problemstellungen im E-Commerce und im Online-Marketing ist die Verteilung des Werbebudgets. Getreu dem Zitat des großen Automobilpioniers und Erfinders Henry Ford:
„Half the money I spend on advertising is waste & the problem is I do not know which half.“
Dabei ist die optimale Zielwertbestimmung noch ein wenig komplizierter. Eine Verteilung des Werbebudgets kann anhand „harter“ KPIs festgemacht werden. Ein Onlinemarketingkanal, etwa Suchmaschinenmarketing (SEA), wird mittels Kostenumsatzrelationen (KUR) und Kostenabsatzrelationen (KAR) gemessen und demnach auch mit einem Budget versorgt, sodass nach Ende einer Werbeperiode ein positives Ergebnis zu verzeichnen ist.
Allerdings gibt es viele Kanäle, die Interessenten oder Neukunden auf eine gewünschte Landingpage weiterleiten (Traffic-Orientierung) und nicht den reinen Abschluss fokussieren, wie es Remarketing- oder Retargetingkanäle tun.
Wie können Unternehmen diese Punkte in Einklang bringen und das gewünschte Geschäftsmodell optimal aussteuern? Das zeigen wir Ihnen im nachfolgenden Paper.
Die Customer Journey
Eine Customer Journey beschreibt den Weg des Kunden entlang verschiedener Touchpoints, an denen dieser mit einem Produkt, einer Marke oder einem Unternehmen in Berührung kommt. Dabei definiert man für diese Kundenreise in der Regel drei Phasen:
1. Die Vorkaufsphase
2. Die Transaktionsphase
3. Die Nachkaufphase
Im Fokus der optimalen Budgetverteilung sind aber vor allem die Vorkaufs- und Transaktionsphase relevant (Awareness und Consideration), da im Rahmen des Attributionsmodells eine Journey mit einem erfolgreichen Abschluss endet. Beispielsweise mit einem Kauf eines Produktes. Schematisch kann eine Customer Journey wie folgt skizziert werden:
Jeder einzelne Punkt symbolisiert einen Touchpoint, indessen der Kunde mit dem Unternehmen interagiert, obgleich der Kunde auch mehrmals den gleichen Kontaktpunkt nutzen kann. Die Summe der einzelnen Touchpoints bis zum definierten Zielevent bezeichnet die Kettenlänge der jeweiligen Journey. Das heißt, es gibt sowohl kurze, als auch längere Kundenreisen. Allerdings werden die einzelnen Journeys in der Regel auf 30 Tage normiert. Sollte ein Kunde also für ein Eventabschluss nach seinen „Erstkontakt“ länger als 30 Tage benötigen, bricht die Journey ab und es beginnt eine neue. Diese Grenze ist dabei willkürlich gewählt, hat sich aber mittlerweile branchenweit bewährt, da man gerne eine monatliche Sicht auf das Budget verfolgt.
Weiterführende Informationen zur Customer Journey in der CINTELLIC-Publikation:
Customer Journeys erfolgreich verstehen, abbilden und gestalten
Bewertung der Customer Journey
Um ein Budget zu allokieren, können nun mehrere Bewertungsmodelle verwendet werden, rein regelbasierte – oder rein statistische Modelle. Aber der Reihe nach. Bei Onsite- und Kampagnentools (u.a. SAS Customer Intelligence 360 & Google Analytics) werden häufig einfache Attributionsmodelle im Lieferumfang mit angeboten. Die bekanntesten Logiken sind First- und Last Click Modelle, sowie das Badewannenmodell, welche im Folgenden kurz erläutert werden.
First Click Modelle:
Im Falle der First Click Attribution wird der erste Kanaleinsprung einer Journey mit 100% gewichtet. Im Beispiel bedeutet dies, dass bei fünf potenziellen Kontakten der erste Kontakt der wichtigste war und der Erlös auf eben diesen Kanal „geschrieben“ wird. Das kann durchaus Sinn ergeben, da so Kanäle und Kampagnen mit Budget versorgt werden, die das Produkt oder die Marke mit „Traffic“ und Ansprachen versorgen. Möchte man also in einen Markt mit seinem neuen Produkt Bekanntheit erlangen, ist dieser Ansatz durchaus plausibel und nachvollziehbar.
Problematisch erweist sich dieses Modell aber dahingehend, da es kaum Erkenntnisse über die Auswirkung auf Conversions und dem Umsatz enthält. Der Checkout-Prozess wird hier nicht fokussiert. Weiter werden, wie bei allen anderen regelbasierten Modellen, alle anderen Kanäle oder Kampagnen, die für den Abschluss wichtig waren, außen vorgelassen.
Last Click Modelle:
Last Click Modelle funktionieren, wie First Click Modelle, mit dem Unterschied, dass nun der letzte Kanaleinsprung der Relevante ist. Das setzt die Kampagnen und Onlinemarketingkanäle ist den Mittelpunkt, die rein auf Conversion optimiert werden. In der Regel sind dies Onsite-Kampagnen, Affiliate- und Retargetingkanäle, aber auch das E-Mail-Marketing.
Wie auch bei den First Click Modellen wird der Einfluss der anderen Touchpoints völlig ignoriert. Dieses Vorgehen ist für die Bestandkundenbespielung sinnvoll, lässt aber die traffic-starken Kanäle außen vor. Somit nimmt man auch immer ein Verzicht auf Neukundengewinnung in Kauf, was insbesondere bei der Verfolgung einer Wachstumsstrategie kein geeignetes Vorgehen für ein Unternehmen ist.
Badewannenmodelle:
Die Badewannenmodelle sollen die Schwächen der vorab vorgestellten Modelle abfedern. Sowohl Neukunden- als auch der Checkout werden gleichermaßen berücksichtigt. Zudem kann das Unternehmen die Gewichte für die einzelnen Touchpoints vorab aus den eigenen Erfahrungen heraus bestimmen.
Und genau das ist das eigentliche Problem, denn eine solche Gewichtsbestimmung kann dazu führen, dass eigentlich sehr niedrigwertige Kontaktpunkte zu stark gewichtet werden. Ferner ist die Umstellung auf ein Badewannen-, oder auch U-Modellansatz schon der erste Schritt für ein datengetriebenes, statistisches Modell.
Das datengetriebene, statistische Modell
Beim datengetriebenen, statistischen Ansatz handelt es sich um ein Modell, welches nicht im Umfang der führenden Kampagnentools mit bereitgestellt wird. Das Modell muss für jedes Unternehmen einzigartig erstellt und konfiguriert werden und in einen IT-Prozess eingebettet werden. Das bringt den großen Vorteil mit sich, dass nun auf alle Bedürfnisse eines Unternehmens oder einer Fachabteilung Rücksicht genommen werden kann. Lassen sich die regelbasierten, standardisierten Modelle nur auf eine KPI (Bestellwert, Clicks, Conversions, etc.) kontrollieren, kann ein individuell entwickeltes Modell eben alle gewünschten KPIs bewerten.
1. Die genauere Verifizierung des Kaufs, bzw. des Abschlusses:
Ein Vertrags- oder Kaufabschluss lässt sich wunderbar binär reduzieren, der Kunde kauft oder eben nicht. Allerdings muss man hier einschränken, dass ein potenzieller Abschluss ein sehr komplexer Vorgang ist. Dieser Vorgang beruht auf einer Vielzahl interner und externer Faktoren, die mit regelbasierten Attributionsmodellen nicht beachtet werden.
Die internen Faktoren sind recht leicht zu identifizieren, da sie uns der Kunde immer gleich mitliefert. Über das Tracking sind Kundenverhalten und Kaufabsichten bekannt, also die sogenannten Engagement-Parameter. Weiter ist bekannt, welches Werbebudget für den Kunden pro Periode aufgewendet wurde. Dies umfasst selbstverständlich das Online- als auch das Offlinebudget. Zudem verfügen Unternehmen über Vergangenheitsdaten dieser Kunden bzw. dieser Kundengruppen, also welche Abschlüsse hat der Kunde vorher schon geschlossen und wie rentabel waren diese.
Die externen Faktoren werden im Rahmen der Erstellung des Attributionsmodells analytisch gewonnen. Dabei sind mache ebenfalls bekannt, andere können nicht sichtbar gemacht werden. Bekannt sind in der Regel der Wohnort oder die Wohnregion eines Kunden (GEO-ID oder PLZ), in Abhängigkeit der aktuellen Datenschutzgrundverordnung (DSGVO). So gibt es Regionen in Deutschland oder Europa, die im Mittel über ein höheres Haushaltseinkommen verfügen als andere.
Dies zahlt u.a. in Kundengruppen-Elastizitäten ein, also zu welchem Betrag der Kunde bereit ist, einen Vertrag abzuschließen oder ein Produkt zu kaufen. Auch lässt sich einteilen, ob es sich um ein notwendiges Produkt (Lebensmittel, Medikamente, Haftpflicht, etc.) handelt oder ob die Kampagne ein reines Luxusgut (Schmuck, Automobil, Lebensversicherung) bewirbt. Was ein Unternehmen allerdings nicht in Erfahrung bringen kann, sind die intrinsischen Bedürfnisse des einzelnen Kunden, die in der jeweiligen Situation zum Abschluss führen. Denn auch ob ein Kunde satt oder hungrig ist, oder gesund oder krank hat Auswirkungen auf diesen Prozess.
Zusammenfassend lässt sich zeigen, dass ein datengetriebenes Modell alle internen und viele externe Faktoren in eine Berechnung der optimalen Werbebudgetverteilung mit aufnehmen kann. Traditionell sind interne und externe Kontrollvariablen wichtig, da sie die elementaren Attribute (Kanaleinspünge) bereinigen und somit genauer optimiert werden kann.
2. Aufbau eines datengetriebenen Attributionsmodells:
Die technische Umsetzung eines Attributionsmodells lässt sich in drei wichtige Phasen unterteilen:
- Im ersten Schritt werden die zur Verfügung stehenden Daten auf Ausreißer und Datenfehler geprüft und in ein statistisches KI-Modell geladen. Die Validierung der einzelnen Variablen oder Features (KI-Kontext) ist elementar und muss anschließend bei jedem standardisierten Prozesslauf durchgeführt werden (klassisches pre-processing). Das statistische Modell ist hier freier zu wählen, da eine Festlegung auf ein Modell häufig zu einem methodischen Operationalisierungsproblem führt.Genauer: Das Modell soll sich den Daten anpassen und nicht umgekehrt. Häufig werden auch mindestens zwei Modelle zu Trainingszwecken implementiert, um den „Gewinner“ über ein Benchmark-Verfahren zu ermitteln. Dabei wird v.a. auf zwei wichtige Ausprägungen kontrolliert, die Performance des Modells und die Genauigkeit. Abhängig vom Use Case muss abgewägt werden, welcher der beiden Punkte relevanter für das Unternehmen ist. Bei einer „Neartime“-Umsetzung (auch als Realtime bekannt) ist die Performance wichtiger, da die Allokation sofort durchgeführt werden muss. Bei monatlichen Budgetallokationen wird hingegen auf die Genauigkeit fokussiert.
- Der zweite Schritt ist der eigentliche IT-Prozess. Sind die analytischen Vorarbeiten abgeschlossen (Schritt Eins) wird ein nachvollziehbarer Prozess, inklusive Scheduling und Monitoring, aufgesetzt. Je nach Use Case müssen hier neben ETL- auch Streaming-Strecken aufgebaut werden. Die Daten werden aus der Cloud oder dem DWH geladen und der beschriebenen Pipeline übergeben. Diese startet dann nach und nach alle relevanten Prozesse an, sodass eine Parameterberechnung zur Allokationsoptimierung stattfinden kann.
- Im dritten Schritt werden die gewünschten Parameter, also die genauen Einflüsse der jeweiligen Kampagnen und Kanäle, ausgegeben und in gewünschte Outputdateien geschrieben. Diese werden dann den relevanten Fachbereichen und dem DWH wieder zugespielt. Die genaue Ausgabe der Dateien ist kundenabhängig und kann über E-Mails erfolgen oder über den DWH-Export in ein firmenweites, oder bereichsweites Reportingtool übergeben werden.Schlussendlich gelangen die Parameter auch wieder zur Analytics-Abteilung, die die Berechnungen auch fachlich weiter betreut und die Ergebnisse fortlaufend validiert, obgleich ein „fertiges“ Attributionsmodell wenig Pflege bedarf.
Zusammenfassend wird somit ein fertiges Statistiksoftwareprodukt initialisiert und über standardisierte IT-Prozesse implementiert. Der Output wird dem Stakeholder bzw. dem Fachbereich auf jede gewünschte Art und Weise zur Verfügung gestellt.
Fazit
Ein datengetriebenes Attributionsmodell kontrolliert auf alle sichtbaren Effekte, die auf einen Kauf- oder Vertragsabschluss wirken. Somit lässt sich das Werbebudget genaustens optimieren, was zur Folge hat, dass jeder Kanal oder jede Kampagne genau mit dem richtigen Budget versorgt wird. Dabei entscheidet jedes Unternehmen selbst, was das „richtige“ Budget ist, denn der Geschäftsfokus kann zwischen Produkten oder Marken variieren. Manchmal sind Image und Bekanntheit, sowie mehr Neukunden wichtiger als die Nettoumsatzerlöse. Wichtig dabei ist zu verstehen, dass ein datengetriebenes Modell genau das alles vereint und so Ihrem Business bestens weiterhilft.
Folgendes spricht für eine Zusammenarbeit mit CINTELLIC
CINTELLIC hat langjährige, branchenübergreifende Erfahrung in der Analyse, Optimierung und Implementierung von datengetriebenen Attributionsmodellen. Als kompetenter Partner begleiten und unterstützen wir Sie gerne in allen Projektphasen – von der Analyse, über die Planung bis hin zur Umsetzung und Aussteuerung. Zögern Sie nicht, uns anzusprechen.
Hier können Sie die Publikation kostenfrei als PDF herunterladen:
PDF jetzt herunterladen